Anion pathway and potential energy profiles along curvilinear bacterial ClC Cl- pores: electrostatic effects of charged residues.

نویسندگان

  • Gennady V Miloshevsky
  • Peter C Jordan
چکیده

X-ray structures permit theoretical study of Cl(-) permeation along bacterial ClC Cl(-) pores. We determined the lowest energy curvilinear pathway, identified anion-coordinating amino acids, and calculated the electrostatic potential energy profiles. We find that all four bacterial ClC Cl(-) crystal structures correspond to closed states. E148 and S107 side chains form steric barriers on both sides of the crystal binding site in the StClC wild-type and EcClC wild-type crystals; both the EcClC(E148A) and EcClC(E148Q) mutants are blocked at the S107 site. We studied the effect that mutating the charge of some strongly conserved pore-lining amino acids has on the electrostatic potential energy profiles. When E148 is neutralized, it creates an electrostatic trap, binding the ion near midmembrane. This suggests a possible electrostatic mechanism for controlling anion flow: neutralize E148, displace the side chain of E148 from the pore pathway to relieve the steric barrier, then trap the anion at midmembrane, and finally either deprotonate E148 and block the pore (pore closure) or bring a second Cl(-) into the pore to promote anion flow (pore conductance). Side-chain displacement may arise by competition for the binding site between the oxygens of E148 and the anion moving down the electrostatic energy gradient. We also find that the charge state of E111 and E113 may electrostatically control anion conductance and occupancy of the binding site within the cytoplasmic pore.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roles of K149, G352, and H401 in the Channel Functions of ClC-0: Testing the Predictions from Theoretical Calculations

The ClC family of Cl(-) channels and transporters comprises membrane proteins ubiquitously present in species ranging from prokaryotes to mammals. The recently solved structures of the bacterial ClC proteins have provided a good model to guide the functional experiments for the eukaryotic Cl(-) channels. Theoretical calculations based on the bacterial ClC structures have identified several resi...

متن کامل

Probing the Pore of ClC-0 by Substituted Cysteine Accessibility Method Using Methane Thiosulfonate Reagents

ClC channels are a family of protein molecules containing two ion-permeation pores. Although these transmembrane proteins are important for a variety of physiological functions, their molecular operations are only superficially understood. High-resolution X-ray crystallography techniques have recently revealed the structures of two bacterial ClC channels, but whether vertebrate ClC channel pore...

متن کامل

Side-chain Charge Effects and Conductance Determinants in the Pore of ClC-0 Chloride Channels

The charge on the side chain of the internal pore residue lysine 519 (K519) of the Torpedo ClC-0 chloride (Cl-) channel affects channel conductance. Experiments that replace wild-type (WT) lysine with neutral or negatively charged residues or that modify the K519C mutant with various methane thiosulfonate (MTS) reagents show that the conductance of the channel decreases when the charge at posit...

متن کامل

Electrostatic Control and Chloride Regulation of the Fast Gating of ClC-0 Chloride Channels

The opening and closing of chloride (Cl-) channels in the ClC family are thought to tightly couple to ion permeation through the channel pore. In the prototype channel of the family, the ClC-0 channel from the Torpedo electric organ, the opening-closing of the pore in the millisecond time range known as "fast gating" is regulated by both external and internal Cl- ions. Although the external Cl-...

متن کامل

F−/Cl− selectivity in CLCF-type F−/H+ antiporters

Many bacterial species protect themselves against environmental F(-) toxicity by exporting this anion from the cytoplasm via CLC(F) F(-)/H(+) antiporters, a subclass of CLC superfamily anion transporters. Strong F(-) over Cl(-) selectivity is biologically essential for these membrane proteins because Cl(-) is orders of magnitude more abundant in the biosphere than F(-). Sequence comparisons rev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 86 2  شماره 

صفحات  -

تاریخ انتشار 2004